杂题小记(2023.03.21)更好的阅读体验戳此进入实际上是 2023.03.17-2023.03.21LG-P3233 [HNOI2014]世界树LG-P5360 [SDOI2019]世界地图LG-P4197 PeaksLG-P4768 [NOI2018] 归程LG-P4899 [IOI2018] werewolf 狼人LG-P1446 [HNOI2008] CardsUVA11255 NecklaceUPD
细节怪。
需要建虚树很套路,然后考虑维护虚树内和虚树外的,对于虚树内的是平凡的,对于虚树外难点在于考虑一条链的分割,不难想到通过倍增实现即可,思路比较清晰不是很难但是码量巨大。
x123
4567891011
12using namespace std;13
14mt19937 rnd(random_device{}());15int rndd(int l, int r){return rnd() % (r - l + 1) + l;}16bool rnddd(int x){return rndd(1, 100) <= x;}17
18typedef unsigned int uint;19typedef unsigned long long unll;20typedef long long ll;21typedef long double ld;22
23242526
27template < typename T = int >28inline T read(void);29
30struct Edge{31 Edge* nxt;32 int to;33 OPNEW;34}ed[2100000];35ROPNEW;36Edge* head[LIM];37Edge* vhead[LIM];38
39int N, Q, M;40int dep[LIM], siz[LIM], dfn[LIM], fa[LIM], top[LIM], idx[LIM], hson[LIM];41int lg2[LIM], mndis[LIM], mnp[LIM], ans[LIM], qs[LIM];42int jmp[LIM][20]; //max 2^1943basic_string < int > S;44bitset < LIM > isKey;45
46int main(){47 memset(mndis, 0x3f, sizeof mndis);48 N = read();49 for(int i = 1; i <= N - 1; ++i){50 int s = read(), t = read();51 head[s] = new Edge{head[s], t};52 head[t] = new Edge{head[t], s};53 }54 auto Init = [](void)->void{55 lg2[1] = 0;56 for(int i = 2; i <= N; ++i)lg2[i] = lg2[i >> 1] + 1;57 }; Init();58 auto dfs_pre = [](auto&& self, int p = 1, int fa = 0)->void{59 dep[p] = dep[fa] + 1, ::fa[p] = fa, siz[p] = 1, jmp[p][0] = fa;60 for(auto i = head[p]; i; i = i->nxt){61 if(SON == fa)continue;62 self(self, SON, p);63 siz[p] += siz[SON];64 if(siz[SON] > siz[hson[p]])hson[p] = SON;65 }66 }; dfs_pre(dfs_pre);67 auto dfs_make = [](auto&& self, int p = 1, int top = 1)->void{68 static int cdfn(0);69 dfn[p] = ++cdfn, idx[cdfn] = p, ::top[p] = top;70 if(hson[p])self(self, hson[p], top);71 for(auto i = head[p]; i; i = i->nxt)72 if(SON != fa[p] && SON != hson[p])self(self, SON, SON);73 }; dfs_make(dfs_make);74 auto LCA = [](int s, int t)->int{75 while(top[s] != top[t]){76 if(dep[top[s]] < dep[top[t]])swap(s, t);77 s = fa[top[s]];78 }if(dep[s] < dep[t])swap(s, t);79 return t;80 };81 auto Handle = [](void)->void{82 for(int i = 1; i <= N; ++i)83 for(int j = 1; j <= 19; ++j)84 jmp[i][j] = jmp[jmp[i][j - 1]][j - 1];85 }; Handle();86 auto BuildVT = [LCA](void)->void{87 sort(S.begin(), S.end(), [](const int &a, const int &b)->bool{return dfn[a] < dfn[b];});88 int len = S.size();89 for(int i = 1; i <= len - 1; ++i)S += LCA(S(i), S(i + 1));90 sort(S.begin(), S.end(), [](const int &a, const int &b)->bool{return dfn[a] < dfn[b];});91 S.erase(unique(S.begin(), S.end()), S.end());92 for(auto it = S.begin(); it != S.end() && next(it) != S.end(); advance(it, 1)){93 int lca = LCA(*it, *next(it));94 vhead[lca] = new Edge{vhead[lca], *next(it)};95 vhead[*next(it)] = new Edge{vhead[*next(it)], lca};96 }97 };98 auto QueryChain = [](int s, int t)->void{99 int p = s;100 for(int i = lg2[dep[s]]; i >= 0; --i)101 if(dep[jmp[p][i]] > dep[t])p = jmp[p][i];102 ans[mnp[t]] -= siz[p];103 int spl = s;104 for(int i = lg2[dep[s]]; i >= 0; --i){105 int lens = dep[s] - dep[jmp[spl][i]] + mndis[s], lent = dep[jmp[spl][i]] - dep[t] + mndis[t];106 if(dep[jmp[spl][i]] > dep[t] && (lens < lent || (lens == lent && mnp[s] < mnp[t])))spl = jmp[spl][i];107 }ans[mnp[s]] += siz[spl] - siz[s], ans[mnp[t]] += siz[p] - siz[spl];108 };109 auto dfs_upward = [](auto&& self, int p = 1, int fa = 0)->void{110 for(auto i = vhead[p]; i; i = i->nxt){111 if(SON == fa)continue;112 self(self, SON, p);113 int cdis = dep[SON] - dep[p];114 if(mndis[SON] + cdis < mndis[p])mndis[p] = mndis[SON] + cdis, mnp[p] = mnp[SON];115 else if(mndis[SON] + cdis == mndis[p])mnp[p] = min(mnp[p], mnp[SON]);116 }if(isKey[p])mndis[p] = 0, mnp[p] = p;117 };118 auto dfs_downward = [QueryChain](auto&& self, int p = 1, int fa = 0)->void{119 for(auto i = vhead[p]; i; i = i->nxt){120 if(SON == fa)continue;121 int cdis = dep[SON] - dep[p];122 if(mndis[p] + cdis < mndis[SON])mndis[SON] = mndis[p] + cdis, mnp[SON] = mnp[p];123 else if(mndis[p] + cdis == mndis[SON])mnp[SON] = min(mnp[SON], mnp[p]);124 QueryChain(SON, p);125 self(self, SON, p);126 }ans[mnp[p]] += siz[p];127 };128 Q = read();129 while(Q--){130 for(auto p : S)vhead[p] = npt, mndis[p] = INF, mnp[p] = 0, ans[p] = 0, isKey[p] = false;131 S.clear();132 M = read();133 for(int i = 1; i <= M; ++i)S += (qs[i] = read()), isKey[S.back()] = true;134 if(!isKey[1])S += 1;135 BuildVT();136 dfs_upward(dfs_upward), dfs_downward(dfs_downward);137 for(int i = 1; i <= M; ++i)printf("%d%c", ans[qs[i]], i == M ? '\n' : ' ');138 }139 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);140 return 0;141}142
143template < typename T >144inline T read(void){145 T ret(0);146 int flag(1);147 char c = getchar();148 while(c != '-' && !isdigit(c))c = getchar();149 if(c == '-')flag = -1, c = getchar();150 while(isdigit(c)){151 ret *= 10;152 ret += int(c - '0');153 c = getchar();154 }155 ret *= flag;156 return ret;157}简单提一下一些细节问题。
首先考虑一下本题的大致思路,构建前缀 MST 和后缀 MST 每次询问合成即可。合成时通过将两个 MST 所有边合成为新的 MST 然后通过虚树的思想只保留关键点,将树简化以保证点数级别。
点的重标号
这是我第一个卡住的点,最开始的思路就是朴素地开一堆 unordered_map 然后手写 pair < int, int > 的哈希建出来一堆映射,将坐标映射为点,然后每次建 MST 或者虚树的时候都重搞一遍,写了一会发现这东西常数似乎有些爆炸,且细节巨多,翻了一下题解区理解了一会才明白这个重标号点的思路:
我们还是回到合成 MST 的过程中,发现如对于
关键点的选取
对于上述点的重标号的过程,对于
虚树的构建
做这道题的时候本来是准备直接写两次按 dfn 排序的朴素建虚树的,后来看到题解区用的都是两次 dfs,不难发现这样是可以减少不少常数的,因为每次的树的形态都完全不同,每次都需要重构树剖或者倍增,于是就不如
前后缀的合并
这里注意需要用后缀在前前缀在后进行合成,因为按照我的写法合并是有序的,即是对
资源的回收
不难发现对于 500MiB 的限制按照我的写法最多开
xxxxxxxxxx11void* Edge::operator new(size_t){static Edge* P = ed; return P++;}改为:
xxxxxxxxxx11void* Edge::operator new(size_t){static Edge* P = ed; if(P - ed > 20100000)P = ed; return P++;}注意这里无需清空边的内存池是因为每次我调用 new 的时候都对其进行了初始化列表的初始化。
代码大同小异。
xxxxxxxxxx145123
4567891011
12using namespace std;13
14mt19937 rnd(random_device{}());15int rndd(int l, int r){return rnd() % (r - l + 1) + l;}16bool rnddd(int x){return rndd(1, 100) <= x;}17
18typedef unsigned int uint;19typedef unsigned long long unll;20typedef long long ll;21typedef long double ld;22
23template < typename T = int >24inline T read(void);25
26int N, M, Q;27unsigned int SA, SB, SC;28int lim;29struct edge{int s, t; int val;};30int nxtR[110][11000], nxtL[110][11000];31
32struct Edge{33 Edge* nxt;34 int to;35 int val;36 OPNEW;37}ed[21000000];38ROPNEW;39
40class VirtualTree{41private:42 Edge* head[1100];43public:44 bitset < 1100 > isKey;45 bitset < 1100 > invt;46 basic_string < edge > edgs;47 void Clear(void){memset(head, 0, sizeof head); isKey.reset(); invt.reset(); edgs.clear();}48 VirtualTree(void){Clear();}49 void AddEdge(int s, int t, int val){50 head[s] = new Edge{head[s], t, val};51 head[t] = new Edge{head[t], s, val};52 }53 bool dfs_pre(int p = 1, int fa = 0){54 int cnt(0);55 for(auto i = head[p]; i; i = i->nxt)56 if(SON != fa)cnt += dfs_pre(SON, p);57 invt[p] = isKey[p] | (cnt >= 2);58 return invt[p] | bool(cnt);59 }60 void dfs_link(int p = 1, int lst = 0, int mxv = 0, int fa = 0){61 if(invt[p]){62 if(lst)edgs += edge{lst, p, mxv};63 lst = p, mxv = 0;64 }65 for(auto i = head[p]; i; i = i->nxt)66 if(SON != fa)dfs_link(SON, lst, max(mxv, i->val), p);67 }68}vt;69
70class MST{71private:72public:73 int tot;74 ll sum;75 basic_string < edge > edgs;76 void Clear(void){edgs.clear(); sum = 0; tot = 0;}77 MST(void){Clear();}78 ll Query(void){ll ret(sum); for(auto edg : edgs)ret += edg.val; return ret;}79}pre[11000], suf[11000];80
81class UnionFind{82private:83 int fa[1100];84public:85 void Clear(void){for(int i = 0; i <= 1010; ++i)fa[i] = i;}86 UnionFind(void){Clear();}87 int Find(int x){return x == fa[x] ? x : fa[x] = Find(fa[x]);}88 void Union(int s, int t){if(Find(s) != Find(t))fa[Find(s)] = Find(t);}89}uf;90
91int main(){92 N = read(), M = read();93 auto GetWeight = [](void)->int{SA ^= SA << 16; SA ^= SA >> 5; SA ^= SA << 1; unsigned int t = SA;SA = SB;SB = SC;SC ^= t ^ SA;return SC % lim + 1;};94 auto Gen = [GetWeight](void)->void{95 scanf("%u%u%u%d", &SA, &SB, &SC, &lim);96 for(int i = 1; i <= N; ++i)for(int j = 1; j <= M; ++j)nxtR[i][j] = GetWeight();97 for(int i = 1; i < N; ++i)for(int j = 1; j <= M; ++j)nxtL[i][j] = GetWeight();98 }; Gen();99 auto MergeMST = [](const MST &A, const MST &B, int idx)->auto{100 unordered_map < int, int > mp;101 ll cur(0);102 MST ret;103 ret.edgs += A.edgs;104 for(auto edg : B.edgs)ret.edgs += edge{edg.s + A.tot, edg.t + A.tot, edg.val};105 for(int i = 1; i <= N; ++i)ret.edgs += edge{A.tot - N + i, A.tot + i, nxtR[i][idx]};106 sort(ret.edgs.begin(), ret.edgs.end(), [](const edge &a, const edge &b)->bool{return a.val < b.val;});107 uf.Clear(), vt.Clear();108 for(int i = 1; i <= N; ++i)vt.isKey[i] = vt.isKey[A.tot + B.tot - i + 1] = true;109 for(auto edg : ret.edgs)110 if(uf.Find(edg.s) != uf.Find(edg.t))vt.AddEdge(edg.s, edg.t, edg.val), uf.Union(edg.s, edg.t), cur += edg.val;111 vt.dfs_pre(), vt.dfs_link();112 ret.edgs = vt.edgs; ret.tot = 0;113 for(int i = 1; i <= A.tot + B.tot; ++i)if(vt.invt[i])mp[i] = ++ret.tot;114 for(auto &edg : ret.edgs)edg.s = mp[edg.s], edg.t = mp[edg.t], cur -= edg.val;115 ret.sum = A.sum + B.sum + cur;116 return ret;117 };118 for(int j = 1; j <= M; ++j)for(int i = 1; i < N; ++i)119 pre[j].edgs += edge{i, i + 1, nxtL[i][j]}, suf[j].edgs += edge{i, i + 1, nxtL[i][j]}, suf[j].tot = pre[j].tot = N;120 for(int j = 2; j < M; ++j)pre[j] = MergeMST(pre[j - 1], pre[j], j - 1);121 for(int j = M - 1; j > 1; --j)suf[j] = MergeMST(suf[j], suf[j + 1], j);122 Q = read();123 while(Q--){124 int l = read(), r = read();125 printf("%lld\n", MergeMST(suf[r + 1], pre[l - 1], M).Query());126 }127 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);128 return 0;129}130
131template < typename T >132inline T read(void){133 T ret(0);134 int flag(1);135 char c = getchar();136 while(c != '-' && !isdigit(c))c = getchar();137 if(c == '-')flag = -1, c = getchar();138 while(isdigit(c)){139 ret *= 10;140 ret += int(c - '0');141 c = getchar();142 }143 ret *= flag;144 return ret;145}考虑建出 Kruskal 重构树,此时对于每次查询可以在线转换为倍增找到最优祖先之后整个子树中对叶子节点的静态区间第 k 大,用主席树维护即可,细节略多。
xxxxxxxxxx151123
4567891011
12using namespace std;13
14mt19937 rnd(random_device{}());15int rndd(int l, int r){return rnd() % (r - l + 1) + l;}16bool rnddd(int x){return rndd(1, 100) <= x;}17
18typedef unsigned int uint;19typedef unsigned long long unll;20typedef long long ll;21typedef long double ld;22
2324252627
28template < typename T = int >29inline T read(void);30
31int N, M, Q;32struct Node{33 Node *ls, *rs;34 int cnt;35 OPNEW;36}nd[LIM << 5];37ROPNEW_NODE;38Node* root[LIM];39
40class UnionFind{41private:42 int fa[LIM << 1];43public:44 void Clear(void){for(int i = 1; i <= (LIM << 1) - 10; ++i)fa[i] = i;}45 UnionFind(void){Clear();}46 int Find(int x){return x == fa[x] ? x : fa[x] = Find(fa[x]);}47 void Union(int s, int t){if(Find(s) != Find(t))fa[Find(s)] = Find(t);}48}uf;49
50struct edge{int s, t; int val;};51basic_string < edge > edgs;52
53struct Edge{54 Edge* nxt;55 int to;56 OPNEW;57}ed[2100000];58ROPNEW;59Edge* head[LIM << 1];60// unordered_map < int, pair < int, int > > rng;61int ccnt;62int ind[LIM << 1];63int val[LIM << 1];64int mnp[LIM << 1], mxp[LIM << 1];65int jmp[LIM << 2][20]; //max - 1866int idx[LIM];67
68int main(){69 memset(val, 0x3f, sizeof val);70 auto Pushup = [](Node* p)->void{71 if(!p)return;72 p->cnt = cnt(p->ls) + cnt(p->rs);73 };74 auto Insert = [Pushup](auto&& self, int val, int cnt, Node* lst, int gl = 0, int gr = LIMV)->Node*{75 Node* p = lst ? new Node(*lst) : new Node{npt, npt, 0};76 if(gl == gr)return p->cnt += cnt, p;77 if(val <= MID)p->ls = self(self, val, cnt, p->ls, gl, MID);78 else p->rs = self(self, val, cnt, p->rs, MID + 1, gr);79 return Pushup(p), p;80 };81 auto QueryKth = [](auto&& self, int k, Node* px, Node* py, int gl = 0, int gr = LIMV)->int{82 // printf("Querying gl = %d, gr = %d, precnt = %d, curcnt = %d, k = %d\n", gl, gr, cnt(px), cnt(py), k);83 if(gl == gr)return k > (cnt(py) - cnt(px)) ? -1 : gl;84 if(!py)return -1;85 int leftCnt = (py ? cnt(py->ls) : 0) - (px ? cnt(px->ls) : 0);//printf("leftcnt = %d\n", leftCnt);86 if(k <= leftCnt)return self(self, k, px ? px->ls : npt, py->ls, gl, MID);87 else return self(self, k - leftCnt, px ? px->rs : npt, py->rs, MID + 1, gr);88 };89 ccnt = N = read(), M = read(), Q = read();90 // for(int i = 1; i <= N; ++i)root[i] = Insert(Insert, val[i] = read(), 1, root[i - 1]);91 for(int i = 1; i <= N; ++i)val[i] = read();92 for(int i = 1; i <= M; ++i){93 int s = read(), t = read(), v = read();94 edgs += edge{s, t, v};95 }sort(edgs.begin(), edgs.end(), [](const edge &a, const edge &b)->bool{return a.val < b.val;});96 auto Kruskal = [](void)->void{97 for(auto [s, t, v] : edgs){98 int fs = uf.Find(s), ft = uf.Find(t);99 if(fs != ft){100 int fap = ++ccnt;101 val[fap] = v;102 ++ind[fs], ++ind[ft];103 head[fap] = new Edge{head[fap], fs};104 head[fap] = new Edge{head[fap], ft};105 // printf("linking fa = %d, p = [%d, %d], val = %d\n", fap, fs, ft, v);106 uf.Union(fs, fap), uf.Union(ft, fap);107 }108 }109 }; Kruskal();110 auto dfs = [](auto&& self, int p, int fa = 0)->void{111 static int cur(1);112 jmp[p][0] = fa, mnp[p] = cur;113 for(auto i = head[p]; i; i = i->nxt)114 self(self, SON, p);115 if(!head[p])idx[cur++] = p;116 mxp[p] = cur - 1;117 // printf("Complete dfs [%d, %d], p = %d\n", mnp[p], mxp[p], p);118 };119 120 for(int i = 1; i <= ccnt; ++i)if(!ind[i]){dfs(dfs, i); break;}121 for(int i = 1; i <= N; ++i)root[i] = Insert(Insert, val[idx[i]], 1, root[i - 1]);//, printf("test mx i = %d, mx2 = %d, cnt = %d, lc = %d, rc = %d, val = %d\n", i, QueryKth(QueryKth, 2, npt, root[i]), root[i]->cnt, cnt(root[i]->ls), cnt(root[i]->rs), val[idx[i]]);122 for(int i = 1; i <= 18; ++i)123 for(int p = 1; p <= ccnt; ++p)124 jmp[p][i] = jmp[jmp[p][i - 1]][i - 1];125 while(Q--){126 int p = read(), lim = read(), k = read();127 for(int i = 18; i >= 0; --i)128 if(val[jmp[p][i]] <= lim)p = jmp[p][i];129 // printf("Querying l = %d, r = %d, k = %d\n", mnp[p], mxp[p], k);130 if(k > mxp[p] - mnp[p] + 1){printf("-1\n"); continue;}131 printf("%d\n", QueryKth(QueryKth, mxp[p] - mnp[p] + 1 - k + 1, root[mnp[p] - 1], root[mxp[p]]));132 }133 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);134 return 0;135}136
137template < typename T >138inline T read(void){139 T ret(0);140 int flag(1);141 char c = getchar();142 while(c != '-' && !isdigit(c))c = getchar();143 if(c == '-')flag = -1, c = getchar();144 while(isdigit(c)){145 ret *= 10;146 ret += int(c - '0');147 c = getchar();148 }149 ret *= flag;150 return ret;151}考虑建出 MST,不过是最大生成树,然后倍增一下,完全类比上一题去做就行,需要 Dijkstra 跑一下最短路,然后挂到线段树上求区间最小值,亦可直接维护。
xxxxxxxxxx171123
4567891011
12using namespace std;13
14mt19937 rnd(random_device{}());15int rndd(int l, int r){return rnd() % (r - l + 1) + l;}16bool rnddd(int x){return rndd(1, 100) <= x;}17
18typedef unsigned int uint;19typedef unsigned long long unll;20typedef long long ll;21typedef long double ld;22
23242526
27template < typename T = int >28inline T read(void);29
30int N, M;31int Q, K, S;32int ccnt;33int curp(1);34int ind[LIM << 1];35int val[LIM << 1];36int idx[LIM];37ll dis[LIM];38ll lst;39int mnp[LIM << 1], mxp[LIM << 1];40int jmp[LIM << 2][20]; //max - 1941bitset < LIM > vis;42struct edge{int s, t; int val;};43basic_string < edge > edgs;44
45struct Edge{46 Edge* nxt;47 int to;48 int val;49 OPNEW;50}ed[41000000];51ROPNEW;52Edge* head[LIM << 1];53Edge* ghead[LIM];54
55class UnionFind{56private:57 int fa[LIM << 1];58public:59 void Clear(void){for(int i = 1; i <= (LIM << 1) - 10; ++i)fa[i] = i;}60 UnionFind(void){Clear();}61 int Find(int x){return x == fa[x] ? x : fa[x] = Find(fa[x]);}62 void Union(int s, int t){if(Find(s) != Find(t))fa[Find(s)] = Find(t);}63}uf;64
65class SegTree{66private:67 ll mn[LIM << 2];68 69 70 71public:72 void Clear(void){memset(mn, 0x3f, sizeof mn);}73 SegTree(void){memset(mn, 0x3f, sizeof mn);}74 void Pushup(int p){75 mn[p] = min(mn[LS], mn[RS]);76 }77 void Build(int p = 1, int gl = 1, int gr = N){78 if(gl == gr)return mn[p] = dis[idx[gl = gr]], void();79 Build(LS, gl, MID), Build(RS, MID + 1, gr);80 Pushup(p);81 }82 ll Query(int l, int r, int p = 1, int gl = 1, int gr = N){83 if(l <= gl && gr <= r)return mn[p];84 if(l > gr || r < gl)return INFLL;85 return min(Query(l, r, LS, gl, MID), Query(l, r, RS, MID + 1, gr));86 }87}st;88
89int main(){90 // freopen("return.in", "r", stdin);91 // freopen("return.out", "w", stdout);92 // freopen("in.txt", "r", stdin);93 // freopen("out.txt", "w", stdout);94 auto Dijkstra = [](void)->void{95 memset(dis, 0x3f, sizeof dis); vis.reset();96 priority_queue < pair < ll, int >, vector < pair < ll, int > >, greater < pair < ll, int > > > cur;97 dis[1] = 0; cur.push({dis[1], 1});98 while(!cur.empty()){99 int p = cur.top().second; cur.pop();100 if(vis[p])continue;101 vis[p] = true;102 for(auto i = ghead[p]; i; i = i->nxt)103 if(dis[p] + i->val < dis[SON])104 dis[SON] = dis[p] + i->val, cur.push({dis[SON], SON});105 }106 };107 auto dfs = [](auto&& self, int p, int fa = 0)->void{108 mnp[p] = curp, jmp[p][0] = fa;109 for(auto i = head[p]; i; i = i->nxt)110 self(self, SON, p);111 if(!head[p])idx[curp++] = p;112 mxp[p] = curp - 1;113 };114 int T = read();115 while(T--){116 curp = 1;117 st.Clear(), uf.Clear(); edgs.clear();118 CLEAR(ind), CLEAR(val), CLEAR(idx), lst = 0, CLEAR(mnp), CLEAR(mxp), CLEAR(jmp), CLEAR(head), CLEAR(ghead);119 ccnt = N = read(), M = read();120 for(int i = 1; i <= M; ++i){121 int s = read(), t = read(), dis = read(), val = read();122 edgs += edge{s, t, val};123 ghead[s] = new Edge{ghead[s], t, dis};124 ghead[t] = new Edge{ghead[t], s, dis};125 }Dijkstra();126 sort(edgs.begin(), edgs.end(), [](const edge &a, const edge &b)->bool{return a.val > b.val;});127 for(auto [s, t, v] : edgs){128 int fs = uf.Find(s), ft = uf.Find(t);129 if(fs != ft){130 int fap = ++ccnt;131 val[fap] = v;132 ++ind[fs], ++ind[ft];133 head[fap] = new Edge{head[fap], fs};134 head[fap] = new Edge{head[fap], ft};135 uf.Union(fs, fap), uf.Union(ft, fap);136 }137 }138 for(int i = 1; i <= ccnt; ++i)if(!ind[i]){dfs(dfs, i); break;}139 for(int i = 1; i <= 19; ++i)140 for(int j = 1; j <= ccnt; ++j)141 jmp[j][i] = jmp[jmp[j][i - 1]][i - 1];142 st.Build();143 Q = read(), K = read(), S = read();144 while(Q--){145 int p = (read() + K * lst - 1) % N + 1, h = (read() + K * lst) % (S + 1);146 for(int i = 19; i >= 0; --i)147 if(val[jmp[p][i]] > h)p = jmp[p][i];148 ll ans = st.Query(mnp[p], mxp[p]);149 lst = ans;150 printf("%lld\n", ans);151 }152 }153 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);154 return 0;155}156
157template < typename T >158inline T read(void){159 T ret(0);160 int flag(1);161 char c = getchar();162 while(c != '-' && !isdigit(c))c = getchar();163 if(c == '-')flag = -1, c = getchar();164 while(isdigit(c)){165 ret *= 10;166 ret += int(c - '0');167 c = getchar();168 }169 ret *= flag;170 return ret;171}好题,难度不大,实现直观。
考虑点权转边权,分别构建最小生成树和最大生成树的 Kruskal 生成树(最大生成树用点权最小值作为边权,反之亦然),老样子维护倍增找到最大可行区间,问题转化为对两个排列的两个区间求是否有交。
考虑维护每个元素在每个排列中的位置,问题转化为二位数点,第一维作为主席树下标,第二维作为权值跑一下即可。
xxxxxxxxxx177123
4567891011
12using namespace std;13
14mt19937 rnd(random_device{}());15int rndd(int l, int r){return rnd() % (r - l + 1) + l;}16bool rnddd(int x){return rndd(1, 100) <= x;}17
18typedef unsigned int uint;19typedef unsigned long long unll;20typedef long long ll;21typedef long double ld;22
23242526
27template < typename T = int >28inline T read(void);29
30int N, M, Q;31int ccnt;32struct Edge{33 Edge* nxt;34 int to;35 OPNEW;36}ed[LIM << 2];37ROPNEW;38Edge *headMx[LIM << 1], *headMn[LIM << 1];39int indMx[LIM << 1], indMn[LIM << 1];40int valMx[LIM << 1], valMn[LIM << 1];41int jmpMx[LIM << 2][20], jmpMn[LIM << 2][20]; //max - 1942int mnpMx[LIM << 1], mxpMx[LIM << 1], mnpMn[LIM << 1], mxpMn[LIM << 1];43int idxMn[LIM], idxMx[LIM], dfnMn[LIM], dfnMx[LIM];44
45class UnionFind{46private:47 int fa[LIM << 1];48public:49 void Clear(void){for(int i = 1; i <= (LIM << 1) - 10; ++i)fa[i] = i;}50 UnionFind(void){Clear();}51 int Find(int x){return x == fa[x] ? x : fa[x] = Find(fa[x]);}52 void Union(int s, int t){if(Find(s) != Find(t))fa[Find(s)] = Find(t);}53}uf;54
55struct edge{int s, t; int val;};56basic_string < edge > MNST, MXST;57
58struct Node{59 Node *ls, *rs;60 int cnt;61 OPNEW;62}nd[LIM << 6];63ROPNEW_NODE;64Node* root[LIM];//rootMn[LIM], rootMx[LIM];65
66int main(){67 memset(valMn, 0x3f, sizeof valMn);68 N = read(), M = read(), Q = read();69 for(int i = 1; i <= N; ++i)mnpMx[i] = mxpMx[i] = mnpMn[i] = mxpMn[i] = i;70 for(int i = 1; i <= M; ++i){71 int s = read() + 1, t = read() + 1;72 MNST += edge{s, t, max(s, t)}, MXST += edge{s, t, min(s, t)};73 }sort(MNST.begin(), MNST.end(), [](const edge &a, const edge &b)->bool{return a.val < b.val;});74 sort(MXST.begin(), MXST.end(), [](const edge &a, const edge &b)->bool{return a.val > b.val;});75 ccnt = N;76 for(auto [s, t, v] : MNST){77 int fs = uf.Find(s), ft = uf.Find(t);78 if(fs != ft){79 int fap = ++ccnt;80 valMn[fap] = v;81 ++indMn[fs], ++indMn[ft];82 headMn[fap] = new Edge{headMn[fap], fs};83 headMn[fap] = new Edge{headMn[fap], ft};84 uf.Union(fs, fap), uf.Union(ft, fap);85 // printf("Link fa = %d, son = %d, %d\n", fap, fs, ft);86 }87 }ccnt = N, uf.Clear();88 for(auto [s, t, v] : MXST){89 int fs = uf.Find(s), ft = uf.Find(t);90 if(fs != ft){91 int fap = ++ccnt;92 valMx[fap] = v;93 ++indMx[fs], ++indMx[ft];94 headMx[fap] = new Edge{headMx[fap], fs};95 headMx[fap] = new Edge{headMx[fap], ft};96 uf.Union(fs, fap), uf.Union(ft, fap);97 }98 }99 auto dfs_mn = [](auto&& self, int p, int fa = 0)->void{100 // printf("p = %d fa = %d\n", p, fa);101 static int cur(1);102 mnpMn[p] = cur, jmpMn[p][0] = fa;103 for(auto i = headMn[p]; i; i = i->nxt)104 self(self, SON, p);105 if(!headMn[p])dfnMn[p] = cur, idxMn[cur++] = p;106 // printf("cur = %d\n", cur);107 mxpMn[p] = cur - 1;108 };109 auto dfs_mx = [](auto&& self, int p, int fa = 0)->void{110 static int cur(1);111 mnpMx[p] = cur, jmpMx[p][0] = fa;112 for(auto i = headMx[p]; i; i = i->nxt)113 self(self, SON, p);114 if(!headMx[p])dfnMx[p] = cur, idxMx[cur++] = p;115 mxpMx[p] = cur - 1;116 };117 for(int i = 1; i <= ccnt; ++i)if(!indMn[i]){dfs_mn(dfs_mn, i); break;}118 for(int i = 1; i <= ccnt; ++i)if(!indMx[i]){dfs_mx(dfs_mx, i); break;}119 for(int i = 1; i <= 19; ++i)120 for(int j = 1; j <= ccnt; ++j)121 jmpMn[j][i] = jmpMn[jmpMn[j][i - 1]][i - 1],122 jmpMx[j][i] = jmpMx[jmpMx[j][i - 1]][i - 1];123 auto Pushup = [](Node* p)->void{124 if(!p)return;125 p->cnt = cnt(p->ls) + cnt(p->rs);126 };127 auto Insert = [Pushup](auto&& self, int idx, int cnt, Node* lst, int gl = 1, int gr = N)->Node*{128 Node* p = lst ? new Node(*lst) : new Node{npt, npt, 0};129 if(gl == gr)return p->cnt += cnt, p;130 if(idx <= MID)p->ls = self(self, idx, cnt, p->ls, gl, MID);131 else p->rs = self(self, idx, cnt, p->rs, MID + 1, gr);132 return Pushup(p), p;133 };134 for(int i = 1; i <= N; ++i)root[i] = Insert(Insert, dfnMx[idxMn[i]], 1, root[i - 1]);135 auto QueryCnt = [](auto&& self, Node* px, Node* py, int l, int r, int gl = 1, int gr = N)->int{136 if(l <= gl && gr <= r)return cnt(py) - cnt(px);137 if(l > gr || r < gl)return 0;138 return self(self, px ? px->ls : npt, py ? py->ls : npt, l, r, gl, MID) + self(self, px ? px->rs : npt, py ? py->rs : npt, l, r, MID + 1, gr);139 };140 auto QueryExist = [QueryCnt](int l1, int r1, int l2, int r2)->bool{141 return QueryCnt(QueryCnt, root[l1 - 1], root[r1], l2, r2);142 };143 // for(int i = 1; i <= N; ++i)printf("%d ", idxMn[i]);144 // printf("\n");145 // for(int i = 1; i <= N; ++i)printf("%d ", idxMx[i]);146 // printf("\n");147 while(Q--){148 int S = read() + 1, T = read() + 1, L = read() + 1, R = read() + 1;149 for(int i = 19; i >= 0; --i){150 if(valMx[jmpMx[S][i]] >= L)S = jmpMx[S][i];151 if(valMn[jmpMn[T][i]] <= R)T = jmpMn[T][i];152 }153 // printf("After jumping S p = %d, val = %d\n", S, valMx[S]);154 // printf("After jumping T p = %d, val = %d\n", T, valMn[T]);155 // printf("faT p = %d, val = %d\n", jmpMn[T][0], valMn[jmpMn[T][0]]);156 // printf("Querying l1 = %d, r1 = %d, l2 = %d, r2 = %d\n", mnpMn[T], mxpMn[T], mnpMx[S], mxpMx[S]);157 printf("%d\n", QueryExist(mnpMn[T], mxpMn[T], mnpMx[S], mxpMx[S]) ? 1 : 0);158 }159 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);160 return 0;161}162
163template < typename T >164inline T read(void){165 T ret(0);166 int flag(1);167 char c = getchar();168 while(c != '-' && !isdigit(c))c = getchar();169 if(c == '-')flag = -1, c = getchar();170 while(isdigit(c)){171 ret *= 10;172 ret += int(c - '0');173 c = getchar();174 }175 ret *= flag;176 return ret;177}直接套用 Burnside,发现问题转化为求对于每个置换以及单位元的不动点数量,对于每个置换的求解过程考虑将其形成的所有环的长度梳理出来然后对三个颜色做一下背包即可,具体地,考虑
x
123
4567891011
12using namespace std;13
14mt19937 rnd(random_device{}());15int rndd(int l, int r){return rnd() % (r - l + 1) + l;}16bool rnddd(int x){return rndd(1, 100) <= x;}17
18typedef unsigned int uint;19typedef unsigned long long unll;20typedef long long ll;21typedef long double ld;22
23template < typename T = int >24inline T read(void);25
26int N, R, G, B, M, MOD;27int tot(0);28int len[110];29int nxt[110];30bitset < 110 > vis;31int dp[30][30][30];32int ans(0);33
34int main(){35 R = read(), B = read(), G = read(), M = read(), MOD = read();36 N = R + G + B;37 auto Make = [](void)->int{38 vis.reset(), tot = 0;39 memset(dp, 0, sizeof dp);40 dp[0][0][0] = 1;41 for(int s = 1; s <= N; ++s){42 if(vis[s])continue;43 vis[s] = true;44 int clen(1);45 int cur = nxt[s];46 while(cur != s)vis[cur] = true, cur = nxt[cur], ++clen;47 len[++tot] = clen;48 }49 for(int c = 1; c <= tot; ++c)50 for(int i = R; i >= 0; --i)51 for(int j = G; j >= 0; --j)52 for(int k = B; k >= 0; --k){53 if(i >= len[c])(dp[i][j][k] += dp[i - len[c]][j][k]) %= MOD;54 if(j >= len[c])(dp[i][j][k] += dp[i][j - len[c]][k]) %= MOD;55 if(k >= len[c])(dp[i][j][k] += dp[i][j][k - len[c]]) %= MOD;56 }57 return dp[R][G][B];58 };59 for(int i = 1; i <= M; ++i){60 for(int j = 1; j <= N; ++j)nxt[j] = read();61 (ans += Make()) %= MOD;62 }63 for(int i = 1; i <= N; ++i)nxt[i] = i;64 (ans += Make()) %= MOD;65 auto qpow = [](ll a, ll b)->ll{66 ll ret(1), mul(a);67 while(b){68 if(b & 1)ret = ret * mul % MOD;69 b >>= 1;70 mul = mul * mul % MOD;71 }return ret;72 };73 printf("%lld\n", ans * qpow(M + 1, MOD - 2) % MOD);74 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);75 return 0;76}77
78template < typename T >79inline T read(void){80 T ret(0);81 int flag(1);82 char c = getchar();83 while(c != '-' && !isdigit(c))c = getchar();84 if(c == '-')flag = -1, c = getchar();85 while(isdigit(c)){86 ret *= 10;87 ret += int(c - '0');88 c = getchar();89 }90 ret *= flag;91 return ret;92}
xxxxxxxxxx11
xxxxxxxxxx11
xxxxxxxxxx11
update-2023__ 初稿