AtCoder Beginner Contest 270 Solution更好的阅读体验戳此进入题面链接题面 Luogu 链接abc不说了(该说不说这一场前三题分类讨论是真麻[ABC270D] Stones题面SolutionCode[ABC270E] Apple Baskets on Circle题面SolutionCode[ABC270F] Transportation题面SolutionCode[ABC270G] Sequence in mod P题面SolutionCode[ABC270Ex] add 1题面SolutionCodeUPD
Takahashi 和 Aoki 在玩一个取石子的游戏。
刚开始,有
现在,他们要按照以下规则轮流取石子:
现在,Takahashi 先取石子,Aoki 后取石子。 他们都想尽可能的最大化他们自己取走的石子数量。
若他们都以最优策略取石子,最后 Takahashi 会取走多少块石子?
开始以为是无脑贪心(主要是 D 题我以为会是很水那种
然后发现贪心是假的,就类似背包不能无脑装最大一样。所以考虑 DP,最开始想到
x123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22
23
24template < typename T = int >25inline T read(void);26
27int N, K;28int A[110];29int dp[11000][2];30// int ans(0); bool flag(true);31// basic_string < int > rem;32
33int main(){34 N = read(), K = read();35 for(int i = 1; i <= K; ++i)A[i] = read();36 for(int i = 1; i <= N; ++i){37 for(int j = K; j >= 1; --j){38 if(i >= A[j])39 dp[i][0] = max(dp[i][0], dp[i - A[j]][1] + A[j]),40 dp[i][1] = i - dp[i][0];41 // else42 // dp[i][j][0] = dp[i][1], dp[i][1] = dp[i][0];43 }44 }//int ans(0);45 // for(int i = 1; i <= K; ++i)ans = max(ans, dp[N][i][0]);46 printf("%d\n", dp[N][0]);47 // for(int i = 1; i <= K; ++i)rem += read();48 // while(!rem.empty() && N){49 // while(!rem.empty() && rem.back() > N)rem.pop_back();50 // if(rem.empty())break;51 // ans += rem.back() * flag, flag ^= true, N -= rem.back();52 // }printf("%d\n", ans);53
54
55 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);56 return 0;57}58
59template < typename T >60inline T read(void){61 T ret(0);62 int flag(1);63 char c = getchar();64 while(c != '-' && !isdigit(c))c = getchar();65 if(c == '-')flag = -1, c = getchar();66 while(isdigit(c)){67 ret *= 10;68 ret += int(c - '0');69 c = getchar();70 }71 ret *= flag;72 return ret;73}存在
题解区怎么都是二分答案的做法,来一发 VP 时糊出来的更加无脑的模拟做法。
首先假设一圈里有
然后注意其中有一步 __int128_t。
xxxxxxxxxx60123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22template < typename T = int >23inline T read(void);24
25int N; ll K;26ll A[210000];27priority_queue < ll, vector < ll >, greater < ll > > buc;28
29int main(){30 N = read(), K = read < ll >();31 ll cur(0);32 for(int i = 1; i <= N; ++i)if((A[i] = read < ll >()))buc.push(A[i]), ++cur;33 ll minus(0);34 while(!buc.empty()){35 ll v = buc.top() - minus; buc.pop();36 if((__int128_t)cur * v <= K)K -= cur * v, minus += v, --cur;37 else{minus += K / cur, K -= K / cur * cur; break;}38 }39 for(int i = 1; i <= N; ++i)A[i] = max(0ll, A[i] - minus);40 for(int i = 1; i <= N && K; ++i)if(A[i])--A[i], --K;41 for(int i = 1; i <= N; ++i)printf("%lld%c", A[i], i == N ? '\n' : ' ');42 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);43 return 0;44}45
46template < typename T >47inline T read(void){48 T ret(0);49 int flag(1);50 char c = getchar();51 while(c != '-' && !isdigit(c))c = getchar();52 if(c == '-')flag = -1, c = getchar();53 while(isdigit(c)){54 ret *= 10;55 ret += int(c - '0');56 c = getchar();57 }58 ret *= flag;59 return ret;60}有
如果两个点
问至少花多少代价才能让所有点连通 .
考虑新建两个点,对
xxxxxxxxxx111123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22
23
24template < typename T = int >25inline T read(void);26
27// struct Edge{28// Edge* nxt;29// int to;30// ll val;31// OPNEW;32// }ed[410000];33// ROPNEW;34// Edge* head[210000];35
36ll X[210000], Y[210000];37int N, M;38ll ans(LONG_LONG_MAX);39
40struct Edge{41 int s, t; ll val;42 friend const bool operator < (const Edge &a, const Edge &b){43 return a.val < b.val;44 }45};46basic_string < Edge > edgs, basic_edgs;47
48class UnionFind{49private:50 int fa[210000];51public:52 void Clear(void){for(int i = 1; i <= 201000; ++i)fa[i] = i;}53 int Find(int x){return x == fa[x] ? x : fa[x] = Find(fa[x]);}54 void Union(int s, int t){fa[Find(s)] = fa[Find(t)];}55}uf;56
57ll MST(void){58 uf.Clear();59 ll ret(0);60 sort(edgs.begin(), edgs.end());61 for(auto e : edgs)62 if(uf.Find(e.s) != uf.Find(e.t))63 uf.Union(e.s, e.t), ret += e.val;64 for(int i = 1; i <= N - 1; ++i)if(uf.Find(i) != uf.Find(i + 1))return LONG_LONG_MAX;65 return ret;66}67
68int main(){69 N = read(), M = read();70 for(int i = 1; i <= N; ++i)X[i] = read();71 for(int i = 1; i <= N; ++i)Y[i] = read();72 for(int i = 1; i <= M; ++i){73 int s = read(), t = read(), v = read();74 // head[s] = new Edge{head[s], t, v};75 // head[t] = new Edge{head[t], s, v};76 basic_edgs += Edge{s, t, v};77 }edgs += basic_edgs;78 ans = min(ans, MST());79 // printf("%lld\n", ans);80 for(int i = 1; i <= N; ++i)edgs += Edge{i, N + 1, X[i]};81 ++N;82 ans = min(ans, MST());83 // printf("%lld\n", ans);84 edgs.clear();85 edgs += basic_edgs;86 for(int i = 1; i <= N - 1; ++i)edgs += Edge{i, N, Y[i]};87 ans = min(ans, MST());88 // printf("%lld\n", ans);89 for(int i = 1; i <= N - 1; ++i)edgs += Edge{i, N + 1, X[i]};90 ++N;91 ans = min(ans, MST());92 printf("%lld\n", ans);93 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);94 return 0;95}96
97template < typename T >98inline T read(void){99 T ret(0);100 int flag(1);101 char c = getchar();102 while(c != '-' && !isdigit(c))c = getchar();103 if(c == '-')flag = -1, c = getchar();104 while(isdigit(c)){105 ret *= 10;106 ret += int(c - '0');107 c = getchar();108 }109 ret *= flag;110 return ret;111}对于某个无穷序列
求最小的 -1。
多组数据,记
保证
保证
大概就是递推转通向,然后发现可以直接 BSGS 解决。
然后就是有一大堆特判的细节需要考虑一下。
xxxxxxxxxx79123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22template < typename T = int >23inline T read(void);24
25ll MOD, A, B, S, G;26unordered_map < ll, int > mp;27
28ll qpow(ll a, ll b){29 ll ret(1), mul(a);30 while(b){31 if(b & 1)ret = ret * mul % MOD;32 b >>= 1;33 mul = mul * mul % MOD;34 }return ret;35}36ll inv(ll v){return qpow(v, MOD - 2);}37ll BSGS(ll A, ll B){38 mp.clear();39 int lim = ceil(sqrt(MOD));40 ll base(1), mul(1);41 for(ll i = 1; i <= lim; ++i)(base *= A) %= MOD, mp[B * base % MOD] = i;42 for(ll i = 1; i <= lim; ++i){43 (mul *= base) %= MOD;44 if(mp.find(mul) != mp.end())return i * lim - mp[mul];45 }return -1;46}47
48int main(){49 // freopen("in.txt", "r", stdin);50 int T = read();51 while(T--){52 MOD = read(), A = read(), B = read(), S = read(), G = read();53 ll V = (G + B * inv(A - 1) % MOD) % MOD * inv((S + B * inv(A - 1) % MOD) % MOD) % MOD;54 if(S == G)printf("0\n");55 else if(!A)printf("%d\n", B == G ? 1 : -1);56 else if(A == 1){57 if(!B)printf("-1\n");58 else printf("%lld\n", ((G - S) * inv(B) % MOD + MOD) % MOD);59 }else printf("%lld\n", BSGS(A, V));60 }61 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);62 return 0;63}64
65template < typename T >66inline T read(void){67 T ret(0);68 int flag(1);69 char c = getchar();70 while(c != '-' && !isdigit(c))c = getchar();71 if(c == '-')flag = -1, c = getchar();72 while(isdigit(c)){73 ret *= 10;74 ret += int(c - '0');75 c = getchar();76 }77 ret *= flag;78 return ret;79}给定序列
大概是一道没有什么高端的算法,仅靠推式子的难度评黑的题。
首先我们不难想到,如果设当前计数器的值为
然后不太严谨地思考一下不难发现,我们每次是使除了选择的其它的计数器都加一,所以拖后腿的一定是
于是此时不难想到一个较为简单的状态:令
显然
转化一下:
现在不难发现即较小的都在左侧,较大的都在右侧,不过这个转移仍然不行,也就是我们是已知
考虑令
显然
类比一下之前的推出来:
显然:
不难发现对于固定的
对于
xxxxxxxxxx89123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
2223
24template < typename T = int >25inline T read(void);26
27struct Matrix2{28 ll v00, v01, v10, v11;29 friend Matrix2 operator * (const Matrix2 &a, const Matrix2 &b){30 return Matrix2{31 (a.v00 * b.v00 % MOD + a.v01 * b.v10 % MOD) % MOD,32 (a.v00 * b.v01 % MOD + a.v01 * b.v11 % MOD) % MOD,33 (a.v10 * b.v00 % MOD + a.v11 * b.v10 % MOD) % MOD,34 (a.v10 * b.v01 % MOD + a.v11 * b.v11 % MOD) % MOD35 };36 }37};38Matrix2 base{1, 0, 0, 1};39
40ll qpow(ll a, ll b){41 ll ret(1), mul(a);42 while(b){43 if(b & 1)ret = ret * mul % MOD;44 b >>= 1;45 mul = mul * mul % MOD;46 }return ret;47}48ll inv(ll v){return qpow(v, MOD - 2);}49Matrix2 qpow(Matrix2 a, ll b){50 Matrix2 ret(base), mul(a);51 while(b){52 if(b & 1)ret = ret * mul;53 b >>= 1;54 mul = mul * mul;55 }return ret;56}57
58int N;59ll A[210000];60
61int main(){62 N = read();63 for(int i = 1; i <= N; ++i)A[i] = read < ll >();64 Matrix2 ans{0, 1, 0, 0};65 ll cur(0);66 for(int i = N - 1; i >= 1; --i){67 ll B = N * inv(i) % MOD, C = (N - cur) * inv(i) % MOD;68 ans = ans * qpow(Matrix2{B, 0, C, 1}, A[i + 1] - A[i]);69 (cur += ans.v00) %= MOD;70 }printf("%lld\n", (ans.v00 % MOD + MOD) % MOD);71 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);72 return 0;73}74
75template < typename T >76inline T read(void){77 T ret(0);78 int flag(1);79 char c = getchar();80 while(c != '-' && !isdigit(c))c = getchar();81 if(c == '-')flag = -1, c = getchar();82 while(isdigit(c)){83 ret *= 10;84 ret += int(c - '0');85 c = getchar();86 }87 ret *= flag;88 return ret;89}update-2023_01_27 初稿