AtCoder Beginner Contest 255 Solution更好的阅读体验戳此进入题面链接题面 Luogu 链接abcd 跳了[ABC255E] Lucky Numbers题面SolutionCode[ABC255F] Pre-order and In-order题面SolutionCode[ABC255G] Constrained Nim题面SolutionCode[ABC255Ex] Range Harvest Query题面SolutionCodeUPD
给定长度为
首先不难发现,对于序列
xxxxxxxxxx60123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22template < typename T = int >23inline T read(void);24
25int N, M;26int S[110000];27int lucky[20];28ll sum[110000];29int ans(-1);30unordered_map < ll, int > mp;31
32int main(){33 N = read(), M = read();34 for(int i = 1; i <= N - 1; ++i)35 S[i] = read(), sum[i] = sum[i - 1] + (i & 1 ? 1 : -1) * S[i];36 for(int i = 1; i <= M; ++i)lucky[i] = read();37 for(int i = 1; i <= N; ++i)38 for(int j = 1; j <= M; ++j)39 mp[(i & 1 ? 1 : -1) * lucky[j] + sum[i - 1]]++;40 for(auto v : mp)ans = max(ans, v.second);41 printf("%d\n", ans);42 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);43 return 0;44}45
46template < typename T >47inline T read(void){48 T ret(0);49 int flag(1);50 char c = getchar();51 while(c != '-' && !isdigit(c))c = getchar();52 if(c == '-')flag = -1, c = getchar();53 while(isdigit(c)){54 ret *= 10;55 ret += int(c - '0');56 c = getchar();57 }58 ret *= flag;59 return ret;60}给定一棵二叉树的先序遍历和中序遍历,请构造一棵以 -1。
也是一道水题,考虑先序和中序的意义即可。
众所周知,先序遍历的顺序是根、左子树、右子树。中序遍历是左子树、根、右子树。
于是不难发现,在当前的先序遍历中取第一个数即为当前的根,然后在中序遍历中找到根的位置,其左侧即为整个左子树,右侧为整个右子树。于是不难想到 dfs 即可,参数维护当前的整个子树属于先序遍历的
考虑无解的情况,要么先序遍历的第一个值不为
xxxxxxxxxx67123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22template < typename T = int >23inline T read(void);24
25int N;26int Pre[210000], In[210000];27int posP[210000], posI[210000];28pair < int, int > son[210000];29
30int dfs(int lp = 1, int rp = N, int li = 1, int ri = N){31 // printf("In dfs(%d ~ %d, %d ~ %d)\n", lp, rp, li, ri);32 if(lp > rp)return 0;33 int rt = Pre[lp];34 if(posI[rt] < li || posI[rt] > ri)puts("-1"), exit(0);35 if(lp == rp)return rt;36 int lsiz = (posI[rt] - 1) - li + 1;37 son[rt].first = dfs(lp + 1, lp + lsiz, li, posI[rt] - 1);38 son[rt].second = dfs(lp + lsiz + 1, rp, posI[rt] + 1, ri);39 return rt;40}41
42int main(){43 N = read();44 for(int i = 1; i <= N; ++i)posP[Pre[i] = read()] = i;45 for(int i = 1; i <= N; ++i)posI[In[i] = read()] = i;46 if(Pre[1] != 1)puts("-1"), exit(0);47 dfs();48 for(int i = 1; i <= N; ++i)printf("%d %d\n", son[i].first, son[i].second);49 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);50 return 0;51}52
53template < typename T >54inline T read(void){55 T ret(0);56 int flag(1);57 char c = getchar();58 while(c != '-' && !isdigit(c))c = getchar();59 if(c == '-')flag = -1, c = getchar();60 while(isdigit(c)){61 ret *= 10;62 ret += int(c - '0');63 c = getchar();64 }65 ret *= flag;66 return ret;67}一般 Nim 游戏基础上增加
显然博弈论,考虑 SG函数。Nim 游戏标准套路,对于多个石子堆求出每个石子堆石子数
本题的区别即为 map 记录转折点,每次查询对应的所在位置然后增加对应数量的
具体实现过程也不难理解,开个 map 里套 basic_string 维护对应
xxxxxxxxxx77123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
22template < typename T = int >23inline T read(void);24
25int N, M;26ll A[210000];27ll oplus(0);28map < ll, basic_string < ll > > rest;29map < ll, ll > SG, repeat;30
31ll CalSG(ll x){32 auto sp = *prev(SG.upper_bound(x));33 return sp.second + (x - sp.first);34}35
36int main(){37 N = read(), M = read(); SG.insert({0, 0});38 for(int i = 1; i <= N; ++i)A[i] = read < ll >();39 for(int i = 1; i <= M; ++i){40 ll p = read < ll >(), v = read < ll >();41 rest[p] += p - v;42 }43 ll preMx(-1);44 for(auto &mp : rest){45 preMx = max(preMx, CalSG(mp.first - 1));46 map < ll, ll > tmp;47 for(auto val : mp.second)tmp[CalSG(val)]++;48 for(auto cur : tmp){49 if(cur.second >= repeat[cur.first] + 1){50 repeat[cur.first]++;51 SG[mp.first] = cur.first;52 break;53 }54 }preMx = max(preMx, CalSG(mp.first));55 SG[mp.first + 1] = preMx + 1;56 }57 for(int i = 1; i <= N; ++i)oplus ^= CalSG(A[i]);58 printf("%s\n", oplus ? "Takahashi" : "Aoki");59 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);60 return 0;61}62
63template < typename T >64inline T read(void){65 T ret(0);66 int flag(1);67 char c = getchar();68 while(c != '-' && !isdigit(c))c = getchar();69 if(c == '-')flag = -1, c = getchar();70 while(isdigit(c)){71 ret *= 10;72 ret += int(c - '0');73 c = getchar();74 }75 ret *= flag;76 return ret;77}给定一片
给出
ODT 随便搞一下即可,没有任何难度,处理一下细节即可。一下子居然没看出来,日常身败名裂。
xxxxxxxxxx87123
45678910
11using namespace std;12
13mt19937 rnd(random_device{}());14int rndd(int l, int r){return rnd() % (r - l + 1) + l;}15bool rnddd(int x){return rndd(1, 100) <= x;}16
17typedef unsigned int uint;18typedef unsigned long long unll;19typedef long long ll;20typedef long double ld;21
2223
24template < typename T = int >25inline T read(void);26
27struct Node{28 ll l, r;29 mutable ll lst;30 friend const bool operator < (const Node &a, const Node &b){31 return a.l < b.l;32 }33};34
35class ODT{36private:37 set < Node > tr;38public:39 auto Insert(Node p){return tr.insert(p);}40 auto Split(ll p){41 auto it = tr.lower_bound(Node{p});42 if(it != tr.end() && it->l == p)return it;43 advance(it, -1);44 ll l = it->l, r = it->r, lst = it->lst;45 tr.erase(it);46 Insert(Node{l, p - 1, lst});47 return Insert(Node{p, r, lst}).first;48 }49 ll Assign(ll l, ll r, ll days){50 ll ret(0);51 auto itR = Split(r + 1), itL = Split(l);52 for(auto it = itL; it != itR; ++it)53 (ret += ((__int128_t)(it->l + it->r) * (it->r - it->l + 1) / 2ll) % MOD * (days - it->lst) % MOD) %= MOD;54 tr.erase(itL, itR);55 Insert(Node{l, r, days});56 return ret;57 }58}odt;59
60ll N; int Q;61
62int main(){63 N = read < ll >(), Q = read();64 odt.Insert(Node{1, N, 0});65 while(Q--){66 ll D = read < ll >(), L = read < ll >(), R = read < ll >();67 printf("%lld\n", odt.Assign(L, R, D));68 }69 fprintf(stderr, "Time: %.6lf\n", (double)clock() / CLOCKS_PER_SEC);70 return 0;71}72
73template < typename T >74inline T read(void){75 T ret(0);76 int flag(1);77 char c = getchar();78 while(c != '-' && !isdigit(c))c = getchar();79 if(c == '-')flag = -1, c = getchar();80 while(isdigit(c)){81 ret *= 10;82 ret += int(c - '0');83 c = getchar();84 }85 ret *= flag;86 return ret;87}update-2022_12_07 初稿